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Abstract: In recent years, convolutional neural networks have been widely used in the area of semantic 
segmentation. In this paper, semantic segmentation network for detecting walls of indoor scenes is 
presented. Given an image of an indoor scene, the network automatically locates the wall regions in the 
image. In other words, walls are distinguished from the furniture, windows, curtains, and other possible 
indoor elements. Encoder-decoder structure of the semantic segmentation module is used. Specifically, 
PSPNet is used, one of the most common semantic segmentation algorithms. Model is trained on a new 
indoor scene dataset made from the publicly available ADE20K dataset, consisting of only two semantic 
labels: wall and no wall. 
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1. INTRODUCTION

The rapid development of deep neural network 
architectures, availability of databases and increase 
of processing power have made it possible to solve 
more complex tasks in the field of computer vision. 
One such task is image segmentation [1]. Image 
segmentation is a process of classifying each pixel 
of an image to one of the predefined categories. 
Hence, image segmentation can be considered as a 
classification on pixel level. Contrary to 
classification, where the model identifies what is in 
an image, image segmentation model also 
performs localization. Image segmentation has two 
variants: semantic segmentation and instance 
segmentation [2]. 
Due to its capabilities, image segmentation can be 
used in different areas, such as autonomous driving 
[3], agriculture [4], robotic navigation [5], medical 
imaging [6], satellite imagery [7], scene 
understanding [8], etc. The main area of interest in 
this paper is indoor scene parsing. 
Scene parsing is a process of segmenting and 
parsing an image into different image regions 
associated with semantic categories [9]. As it 
predicts class label, location, and shape of the 
object in an image, it provides complete 
understanding of a scene. Our goal is to develop a 
system for segmenting walls in images of indoor 
scenes. Indoor semantic segmentation is a 
challenging task due to the high variability of data. 
This variability is the result of indoor scenes often 
being cluttered, with a lot of illumination variation 
[10]. Also, there is often similarity between walls 
and other semantic parts, such as ceilings, that 
makes it more difficult to distinguish between these 
classes. 

2. Semantic segmentation

Semantic segmentation is the process of assigning 
class label to every pixel in an image. It treats 
multiple objects of the same class as a single entity. 
Instance segmentation, the other type of image 
segmentation, treats multiple objects of the same 
class as distinct objects. In the Fig. 1 difference 
between semantic segmentation and instance 
segmentation is shown. 

2.1 Architectures 

The most commonly used architecture for semantic 
segmentation is symmetric. This architecture 
consists of an encoder and a decoder, followed by 
a pixel-wise classifier, as shown in the Fig. 2. 

Typical semantic segmentation algorithms that use 
this structure are SegNet [12], U-Net [13], 
DeepLab [14], etc. 
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The encoder part of the architecture is typically a 
pre-trained classification network that is used for 
extracting complex semantic features. As 
preserving image dimensions throughout the entire 
network is computationally expensive, encoder 
performs downsampling of the input resolution. The 
output of the encoder structure is a low-resolution 
feature map that is learned to be efficient at 
discriminating between classes. Due to the 
downsampling of the input image, a lot of 
information is lost. 
The decoder part of the architecture is a network 
whose main role is to recover details from the 
feature map. Input to the decoder is the output of 
the encoder. Decoder can also use additional 
feature maps from middle layers of the encoder 
using skip connections. This helps the decoder to 
prevent loss of information that is imposed by the 
encoder. The decoder upsamples encoded features 
to the resolution of the input image and outputs the 
segmentation mask. 

2.2. Loss functions 

The most widely used loss function for the 
classification task is a cross-entropy loss. Since 
semantic segmentation is pixel level classification, 
loss function that is often used, is pixel-wise cross-
entropy loss [15]. This loss examines each pixel of 
an image individually, after which, an averaging 
over all pixels is done. This can be a problem if 
different classes are not equally represented in an 
image, because the most prevalent class will 
dominate during training. Hence, the cross-entropy 
loss is not a good choice in the case of imbalanced 
classes. One of the potential solutions is to use 
weighted cross-entropy loss, where each class is 
assigned with the appropriate weight. Larger 
weights are assigned to the less represented 
classes, which leads to the decrease in influence of 
the more represented classes. 
Focal loss is an improved version of cross-entropy 
loss that makes the model focus on “difficult” 
examples by assigning them the larger weights. In 
the case of semantic segmentation, difficult 
examples are the pixels for which the model 
prediction (probability of belonging to the genuine 
class) is small, such as pixels of a background with 
noisy texture, pixels of partially cluttered objects, 
etc.  
Another popular loss function, that successfully 
deals with the problem of imbalanced data in 
semantic segmentation, is dice loss. However, this 
loss only addresses the foreground-background 
imbalance, but ignores imbalance between “easy” 
and “difficult” examples. It is based on the dice 
coefficient that is a measure of overlap between 
two masks. 

2.3. Metrics 

The best-known metrics for evaluating semantic 
segmentation models are pixel accuracy (PA) and 
intersection over union (IoU). 

Pixel accuracy is a ratio between the amount of 
correctly classified pixels and total number of pixels 
in the image. In the case of multiple classes, mean 
pixel accuracy (mPA), which represents the class 
average accuracy, is used. It is not recommended 
to use this metric in the case of imbalanced class 
datasets because only the correct classification of 
the dominant class will yield a high accuracy. 
Intersection over union calculates the ratio 
between the overlap between the ground truth and 
the output segmentation mask, and their union. In 
the case of multiclass datasets, mean intersection 
over union (mIoU) is used. mIoU is calculated by 
averaging the IoU over all classes. 

3. Wall segmentation 

Wall segmentation is a special case of semantic 
segmentation. The task is to classify each pixel in 
one of two classes: wall and no wall. The goal is to 
distinguish walls from the rest of the room: ceilings, 
windows, paintings, doors, furniture, floors… 
Wall segmentation is not an easy task. The wall 
edges are usually hard to detect due to the 
similarity with other semantic parts of the indoor 
scene. Also, often there are blurred parts of an 
image, representing items hanging on the wall that 
are difficult to localize, thus making it difficult to 
segment walls. 

3.1. Dataset 

In this paper, a modification of the ADE20K dataset 
is used [9]. The original ADE20K dataset consists 
of more than 20000 images of both indoor and 
outdoor scenes, annotated with 150 different 
categories. Each image has an associated 
segmentation mask. Most objects are also 
annotated with their parts. Examples of images 
from the ADE20K dataset with their associated 
segmentation masks are shown in the Fig. 3. 

 

As the ADE20K dataset consists also of images that 
are not useful for the task of wall segmentation, it 
is modified so that it contains only images of 
interiors. Only a third of the original dataset are 
images of interest. Only three labels are kept: wall, 
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no-wall and not annotated pixels. Examples of 
images from the modified dataset are shown in the 
Fig. 4. 

 
Figure 4. Indoor images in the modified ADE20K 

dataset with associated segmentation 
masks (green - wall, blue - no wall, 
black - not annotated pixels) 

3.2. Model 

In this paper an encoder-decoder semantic 
segmentation model based on PSPNet [16] is 
utilized. The encoder forms a feature map of low 
resolution from the given image, while the decoder 
upsamples the coarse feature map into a full-
resolution map and produces the segmentation 
mask. 
Encoder 
Encoder is usually a modified convolutional neural 
network, typically used for classification tasks. In 
this paper ResNet-50 network is used. In [14], a 
variety of techniques for improving performance of 
the existing semantic segmentation architectures 
are proposed. These techniques reflect in obtaining 
finer results with less computational power. One of 
the improvements refers to the application of a 
dilated convolution, instead of a standard 
convolution within the encoder network. 
Working with low-resolution feature maps leads to 
having less parameters of the model. Another 
advantage is having a large receptive field that 
enables extracting more context information. On 
the other hand, the main disadvantage of low-
resolution feature map is the lack of spatial 
information that is very important for obtaining fine 
details for the task of semantic segmentation.  
Dilated convolution enables having a large 
receptive field without increasing the number of 
parameters, while preserving spatial resolution. An 
example of the dilated convolution with a kernel 
size 3×3, with different dilation rates is given in  
Fig. 5. 

   
Figure 5. Example of 3×3 dilated convolution with 

dilation rate D={1, 2, 3} 

In this paper, dilated ResNet-50 network is used. 
Following the work in [14], in the last two building 
blocks of the network, stride is reduced to 1 and all 
the following convolutions are replaced with dilated 
convolutions with a dilation rate D=2. 
Decoder 
The main part of the decoder is the pyramid pooling 
module (PPM) [16]. The entire structure of the used 
semantic segmentation model, with the PPM 
module, is shown in the Fig. 6. 

 
Figure 6. Overview of the semantic segmentation 

model with PPM module [16] 

PPM gathers global context information by different 
region-based context aggregation. On top of the 
encoded feature map, adaptive pooling is applied, 
followed by 4-level pyramid pooling. Outputs of 
different levels of pyramid module are feature maps 
of different sizes. On top of each of these feature 
maps average pooling is used, followed by 1×1 
convolution. The purpose of this convolution is to 
reduce the number of channels N times compared 
to the feature map produced by the encoder, where 
N is the number of pyramid levels. Obtained feature 
maps are upsampled to the size of the input feature 
map using bilinear interpolation. Finally, all four 
feature maps, along with the input feature map, are 
concatenated, thus obtaining a global feature map. 
It is followed by a convolutional layer in order to 
generate the final prediction map. 
The number of pyramid levels, as well as the size 
of each level can be changed, according to the size 
of the feature map that is an input to the PPM. 
Using 4-level pyramid, the pooling filters cover the 
entire image, half of the image and the small 
regions of the image. This is a reason why 
information gathered by the PPM is more 
representative than information gathered by global 
average pooling. After the PPM module, the 
segmentation mask is upsampled to the resolution 
of the input image. 

4. Experiments 

The described semantic segmentation model was 
implemented in PyTorch [17]. 
The criterion function used for model training was 
sum of cross-entropy for each spatial position in the 
feature map. All pixels in an image, as well as the 
class labels (wall/no wall), have the same weight. 
Non-annotated pixels were ignored during training. 
Three different approaches to the model training 
were used. 
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4.1. Training 

Optimization algorithm used for training is 
stochastic gradient descent (SGD). “Poly” learning 
rate strategy was used (1). 

 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ �1 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 �
0.9

  (1) 

The starting learning rate was set to 𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0.02, 
while the maximum number of iterations was set to 
𝑚𝑚𝑚𝑚𝑚𝑚_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100000. Current iteration is given by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 
Number of epochs was 20 with 5000 iteration per 
epoch. The learning rate over iterations is shown in 
the Fig. 7. 

 
Figure 7. Learning rate value during training 

For data augmentation, random mirror flip and 
random resize to the one of the pre-defined sizes 
were applied. As additional regularization, dropout 
with the parameter p=0.1 was performed before 
the last convolutional layer in the decoder part. 
Also, each batch consists of two images. 
First approach to model training consists of two 
separate steps. Firstly, the model was trained on 
the entire ADE20K dataset (with all 150 classes), 
after which transfer learning, on the modified 
ADE20K dataset, was performed. In the first 
training, encoder was initialized with weights of the 
ResNet-50 model pre-trained on ImageNet, while 
the decoder was randomly initialized using Kaiming 
initialization. Transfer learning was performed by 
changing only the last output layer of the decoder 
(in order to enable classification into 2 classes, 
instead of 150), and training only this new layer, 
while freezing all previous. The model was trained 
for only one epoch after transferring the weights.  
Second approach to model training, unlike the 
first approach, trained the entire decoder structure, 
not only the last layer, while the encoder weights 
were frozen. The changed model was trained for 5 
epochs. 
Third approach used the modified ADE20K 
dataset from the start. Unlike previous approaches, 
there was no transfer learning. After initializing the 
encoder with pre-trained ResNet-50 and random 
initialization, the model was trained end-to-end 
with two classes. 
 

4.2. Results 

Dataset used for model evaluations is a subset of 
the modified ADE20K validation dataset, consisting 
only of indoor images. Metrics used for model 
evaluation are pixel accuracy and intersection over 
union. 
Evaluation results of models trained by the three 
different approaches are given in the Table 1. 

Table 1. Evaluation results on the validation set 

 First 
approach 

Second 
approach 

Third 
approach 

PA [%] 84.82 86.24 90.75 

IoU [%] 56.87 59.08 69.05 

From the results given in Table 1, it can be seen 
that the best pixel accuracy and IoU are obtained 
by the third approach to model training, where 
model was specialized to classify only two classes 
from the start. It is important to note that high pixel 
accuracy doesn’t always mean that the 
segmentation model performs good for each class, 
especially in the case of imbalanced class datasets. 
For that reason, IoU is the better metric. 
Results of wall segmentation for all three 
approaches, with the corresponding pixel accuracy 
and IoU, for one image from the validation set are 
given below. In the Fig. 8 original image and 
ground truth are given, while in the Fig. 9 predicted 
segmentation masks are given. 

 
Figure 8. Original image (left) and ground truth 

(right) 

 
a) b) c) 

Figure 9. Predicted segmentation masks: a) first 
approach, b) second approach, c) third 
approach 

Based on previous images, it can be seen that the 
first approach gives the worst results. A lot of pixels 
of paintings are classified as wall. There is an 
improvement using the second approach, but the 
third approach gives the best results. 
In the Fig. 10, smoothed accuracy and smoothed 
loss of the best model on the train set during 
training, at each iteration, are shown. 
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Figure 10. Accuracy (left) and loss (right) of the 

best model on the train set during 
training 

In the Fig. 11, pixel accuracy and IoU on the 
validation set, for each epoch during training, are 
shown. 

  
Figure 11. Accuracy (left) and IoU (right) on the 

validation set during training 

5. Limits of the current approach 

During model testing, it has been observed that 
there are different limitations imposed mostly by 
data quality. Some limitations are discussed in 
more detail below. 

5.1. ADE20K scenes 

All data in the ADE20K dataset is grouped into 
different scene categories, such as living room, 
bedroom, church, airport, etc. When creating a 
modified ADE20K dataset used for training, 
described in this paper, a subset of scene 
categories was selected. This selection was done 
under the assumption that images belonging to a 
certain category contain walls. There was no 
validation whether the selected images contain 
walls or not. As a result, there is a number of 
images in the final dataset that are not of interest 
for training the wall segmentation model. This may 
result in model performance degradation. 

5.2. Annotation quality 

During error analysis, it has been noticed that there 
are certain images with either wrongly annotated 
walls, or pixels of wall regions not annotated at all. 
Examples of these two cases are given in the  
Fig. 12. 

 
Figure 12. Examples of low-quality annotations 

5.3. Overcluttered images 

Another dataset related problem that may affect 
model quality is when scene in the image is 
cluttered with various object, as shown in Fig. 13. 

   
Figure 13. Example of a cluttered scene and the 

model prediction 

5.4. Image resolution 

The model is trained on the range of different 
resolutions and gives the best results for images of 
similar resolution. For images of substantially 
different resolution, the model does not behave as 
expected. When the input resolution is large, image 
should be downsampled to a lower resolution within 
the range the model was trained on. On the other 
hand, if the input resolution is too small, the model 
is not able to extract all the information, from the 
image, necessary for segmentation. 

5.5. Difficult images 

When it comes to semantic segmentation, human 
error performance is a good proxy for the bayes 
error [18]. So, if humans are not able to 
successfully distinguish between wall and no wall 
classes in an image, it cannot be expected from the 
model to perform well on this image. Example of 
such an image is given in the Fig. 14. 

   
Figure 14. Example of an ambiguity 

6. CONCLUSION 

In this paper, a model structure for semantic 
segmentation of walls, was described. Encoder-
decoder architecture was used. As the encoder, 
dilated ResNet-50 network was used. Building block 
of the decoder was pyramid pooling module in 
combination with bilinear interpolation. The model 
was trained on a modified ADE20K dataset, 
consisting only of interior scene images with two 
classes (wall and no wall). Three different 
approaches to model training were tested. The best 
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approach was directly training the model on the 
modified ADE20K dataset, without transfer 
learning. Implementation of all approaches is 
provided in [17]. 
Wall segmentation is a complex task, due to strong 
occlusions, similarity with other semantic parts of 
the interior scenes, as well as different objects that 
occlude the wall and are hard to localize. During 
model development, different problems with the 
current setup of the project, were observed. In the 
future work, most of these problems can be 
overcome. When it comes to the selected images, 
validation of each image, whether it is an image of 
interest and contains walls, should be performed. 
Also, all images with bad mask annotations should 
be discarded. Regarding images with any 
ambiguities, these images should be treated 
carefully. All ambiguous images reflect on the 
model performance and their influence cannot be 
predicted. Each image should be separately 
reviewed whether to discard or keep. 
Except data cleaning, future work may also consist 
of experimenting with different model architectures 
in order to increase validation metrics. Also, lighter 
models can be implemented with the goal to speed 
up the entire wall segmentation system. In future 
work, practical application of such a system can 
also be explored. 
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