

7th International Scientific Conference

Technics and Informatics in Education

Faculty of Technical Sciences, Čačak, Serbia, 25-27th May 2018

Session 2: IT Education and Practice UDC: 004.43

219

Benchmark of Web Browsers with Automated

Testing Tool

Srđan Nogo 1*, Zoran Škrkar 1
1 University of East Sarajevo/Faculty of Electrical Engineering, East Sarajevo, Bosnia and

Herzegovina
* srdjan.nogo@gmail.com

Abstract: The paper investigates method of benchmark of four web browsers against open source

Automation Testing tool Selenium web driver. We will present two test scenarios and in both of them it is

necessary to generate an automated test using the C # programming language, in combination with the

Selenium web driver. The aim of this research paper is to evaluate and compare execution time for

automated test setup against four web browsers to determine their usability and effectiveness. Based on

the presented scenarios and described procedures, we will show that Microsoft has seriously approached

resolving the deficiencies that existed on Internet Explorer, and that Edge has become a competitive

browser, at least when we are talking about test executing, which has not been the case with Internet

Explorer so far.

Keywords: Benchmark; Selenium web driver; Automated test; C# programming language

1. INTRODUCTION

According to Glenford et al. in [1], “Software

testing is a process, or a serial of processes,

designed to make sure computer code does what

it was designated to do and, conversely, that it

does not do anything unintended”. From previous

statement we can conclude that the main

objective of testing is to find bugs in the computer

code and to fix them to improve quality of

software. For example Srinivas and Jagruthi in

[2], give an assessment that the process of

testing consumes 40-50 % of development cycle

time and more effort for software requiring more

reliability as well. From this statement we can see

that a significant number of quality assurance

team working hours have been allocated for

testing software tools for purpose of web

browsing. According to Li et al. in [3], “Seeking

information on the Web has become an important

learning activity in current learning environment”.

This assertion points out that it is very important

for users to choose a particular type of web

browser that will save their time spent on

searching large datasets. Thus, based on the

correct selection of the web browser, they will

avoid the situation of being exposed to

disorientation and cognitive overload, and thus

simplify their Information Gathering task to

finding an answer or a Website.

In the present work, we planned to study methods

of automatic testing of the response of four types

of web browsers, with which we can measure the

load time of a particular web site.

There are two scenarios. In both scenarios, it is

necessary to generate an automated test using

the C # programming language, in combination

with the Selenium web driver.

This paper is structured as follows: After

introductory section where the general definitions

of automated testing are given, there is Section 2.

describing the methodology used to start two

different test scripts for automatic testing using

Selenium Web Driver that supports four types of

Internet browsers (Mozilla Firefox, Google

Chrome, Internet Explorer and Microsoft Edge).

Methodology Section was developed, as a starting

basis for the proposed evaluation study for

automated testing outlined in Section 3. when the

usage is concerned. Section 3. presents a good

practice case and explains the main focus of this

survey paper. In this section, the final result of

the research is presented in the form of the time

difference in the performance of tests on different

web browsers (the worst, best and average time

of execution) of the test scenarios for each

browser. Based on these research results, we can

evaluate Benchmark for web browsers using an

automated test tool and provide the visual means

to confirm our summary and conclusions outlined

in section 4.

2. METHODOLOGY

According to Ieshin et al. in [4], use of automation

test tool for program code testing increases the

test execution speed and software become more

reliable, repeatable, programmable,

mailto:srdjan.nogo@gmail.com

IT Education and Practice Nogo and Škrkar

220

comprehensive, and reusable. In the present

work, we have created a test using the C #

programming language, in combination with the

Selenium web driver. Inderjeet and Tarika in [5],

state that Selenium is one of the efficient open-

source automated testing tools which provides a

nice testing framework for testing wide variety of

applications exporting scripts in almost every

language including java, .net, c#. Selenium Web

Driver supports all browsers for execution. With

this automated testing tool, we can run more tests

on different types of web browsers. Two tested

scenarios were launched on 4 (four) different web

browsers:

− Mozilla Firefox,

− Google Chrome,

− Internet Explorer,

− Microsoft Edge

Both of the tested scenarios are based on

calculation of the response time required for the

test to be performed using each web browser. The

first test scenario was designed to measure the

time required to open google.ba, then to search

for the term Automated test and to check if the

search results were loaded. The second scenario

opens the ibusiness.ba page and, by clicking on

each menu, checks if they are available and

clickable.

The time in both scenarios is measured using the

Stopwatch method in the following way, first the

Stopwatch class object is created, followed by the

Start method, as shown in “Fig. 1”.

Figure 1. Creating object of Stopwatch class

The next step is to call a method that performs

the complete test, so that the desired URL opens

and performs all necessary operations. Calling a

method that performs all of the necessary test

steps from Scenario 2 is shown in “Fig. 2”.

Figure 2. Calling LoadIBPage method

As you can see from the “Fig. 2”, it is the string

method which has some return value, and subject

to its value, the results that arrive at the email, as

a final report depend as well.

The last step is used to stop the stopwatch to get

the final test time.

The stopwatch stops by calling the Stop method,

as shown in “Fig. 3”.

Figure 3. Stop the stopwatch

The LoadIBPage method is used to load the page

you want and to check if the menus that exist on

that page are available and whether they are

functional. The basic idea is to somehow count the

menus and the number of menus to be the upper

limit of the for loop, in this way avoiding the

possible "hard coding" in which you should know

in advance how many menus page there are. The

tendency of today’s web pages is that there are

always some changes, so it can change the

number of menus. If the testing was made so that

the number of the menus is "hard coded", any

change in this number would failed the test. If this

does not happen, the code is implemented by pre-

counting the menus by using a simple java script

function that is executed using

IjavaScriptExecutor and which as a return

value, has the number of desired elements.

JavaScript is a powerful scripting language to

develop cross-browser compatible software

libraries. In combination with HTML5 or HTML6 in

modern browsers, JavaScript is the language of

choice to ensure portability and wide applicability

interactive web-facing tools [6,7]. The entire

process is shown in “Fig. 4”.

Figure 4. Using the java script code to count the

page's menu

As given in “Fig. 4”, all the elements within the

parent element labelled with u155-18 are

counted, where # indicates that it is an element in

which the u155-18 is id.

The Java script code is written in such a way that

the return value is in the JavaScript Object

Notation-JSON format, after executing the code,

returned value must be converted into string

format, and then into the int format because the

return value is required as a numeric value within

the loop. By this approach, we have resolved a

problem if menus are created dynamically,

because their number are no longer important to

us.

3. EVALUATION STUDY

Today, there is a large number of Internet

browsers in use on the web market. Web browsers

have become a major component of the routine

human-computer interaction, with some operating

systems entirely based on browsers (e.g.,

ChromeOS by Google [8]). They all have almost

the same functionality and offer almost the same

services, but they are not used equally by users.

Some web browsers come in a package with an

operating system that is used on a local machine,

IT Education and Practice Nogo and Škrkar

221

others can be downloaded from the Internet (may

be commercial or written in open source

technology) and the user can decide which type of

web browser they want to use. This is true for

most internet users, but when we talk about the

business world, some other rules may apply.

Some companies, due to certain security clauses

in contracts signed with various partners and

other companies, decided to use only a specific

type of browser to access the Internet. This

approach is a challenge for teams that test web

applications. If testing is performed exclusively on

a single browser, that kind of testing may be

considered incomplete.

Because of this two test scenarios are presented

in this paper, both of them are tested on 4 (four)

different browsers, (Mozilla Firefox version 59.0.1

(64-bit), Google Chrome version 64.0.3282.186

(64-bit), Internet Explorer version

11.309.16299.0 and Microsoft Edge version

41.16299.248.0.). All tests are executed on

machines with installed Windows 10 operating

system, test code is written in C# programming

language using automated testing Selenium

WebDriver version 3.11.0.

The final result will present the difference in test

run times on different web browsers, with the

worst, best, and average test run times for each

browser individually.

For both scenarios testing comparison between

these four web browsers is made on the basis of

the following:

− A concrete browser starts,

− Measurement of time begins,

− Opening the appropriate website,

− Test scenario is executed,

− Closing the browser,

− measuring time stops,

− A report will be sent to the email with the time

of the test and information about the used

internet browser.

Tests are directly run from VS (Visual Studio)

environments as shown in the “Fig. 5”.

Figure 5. Run test from Visual Studio

3.1. Automatic test no.1

In this automated test scenario, we have a few

steps to open a web site that is commonly known

as "google.ba", to enter the term Automation test

in the search box and click on the search after the

result is displayed, it is necessary to check

whether the first result is available in a row. After

the completion of the test, on the test engineer’s

e-mail results with the time required for the

execution of this scenario expressed in seconds

will be sent. The test will be performed 10 times in

a row on each examined browser, registering the

best and worst performing times, as well as the

average time for all of them. After completing all

of the above test steps, the comparative results

for 4 browsers are given in Chart 1. Time is

expressed in seconds.

Chart 1. Showing comparative results for 4

browsers

The average time for performing the 10 reps for

test 1. is given in Chart 2.

Chart 2. Display the average time for 10 reps

The results provided indicate that a Firefox

browser had the slowest time, while on the other

hand, the best results were achieved with

Microsoft Edge browser.

3,1

4,09

7,76

5,77

2,03

3,41

3,34

3,89

0 2 4 6 8 10

MICROSOFT EDGE

INTERNET EXPLORER

GOOGLE CHROME

MOZILLA FIREFOX

Test 1

The best time The worst time

2,21

3,69

4,42

4,53

0 1 2 3 4 5

MICROSOFT EDGE

INTERNET EXPLORER

GOOGLE CHROME

MOZILLA FIREFOX

Average time for Test 1

Average time for 10 reps

IT Education and Practice Nogo and Škrkar

222

3.2. Automatic test no.2

In the following automated test, the ibusiness.ba

website opens and after the displayed result, it is

necessary to check that 5 menus are active and

accessible. After completing all of the above test

steps, the comparative results for 4 browsers are

given in Chart 3.

Chart 3. Showing comparative results for 4

browsers

The average test run time for 10 reps for each

individual web browser is given in Chart 4.

Chart 4. Display the average time for 10 reps

The average results for each of the individual web

browsers are different from the results in test

no.1. The Chart. 4, shows that the best average

time as in test no.1, was achieved with Microsoft

Edge, but based on the test result 2 in a more

complex scenario, Internet Explorer has the worst

result.

From the graphs shown, it can be seen that the

test run rate differs from browser to browser, and

that the difference between the worst and the

best average time is reduced as the testing

scenario becomes more complicated. In both

scenarios, the best time has been achieved by

Microsoft's next generation search engine

(Microsoft Edge, which rightfully inherited an old

and pretty obsolete version of Internet Explorer).

However, in the second test scenario, which is

more complex than the first one, the difference

between the best and the worst time is

decreasing, and it can be concluded that by

completing the scenario, the average execution

time is approaching each other. That situation for

future testing scenarios is more than good,

because testing teams are given the option (if

they are not conditioned by running tests on a

specific browser), to select the one which offers

the easiest way for creating the tests. It should be

noted that at least two browsers are included in

the testing process, while at least free would be

optimal, but right approach is that at least one of

the browsers should be Microsoft's one.

4. CONCLUSION AND FUTURE WORK

Based on the presented scenarios and described

procedures, it is concluded that Microsoft has

seriously approached to resolving the deficiencies

that existed on Internet Explorer, and that Edge

has become a competitive browser, at least when

test execution is concerned, which has not been

the case with Internet Explorer so far.

It can be said that it is on the test designer

himself to adjust to the browser as desired, and

subject to his experience, to select which browser

to use for testing. We should bear in mind that

most of the development teams have the most

problems with the older versions of Internet

Explorer that are still in use, and if necessary,

testing in any of the versions of this browser

would be desirable. This research work can be

extended to more experiments with more tools

and different comparative parameters parameters

as i.e. tests should be executed on computers

with Open source operating system.

REFERENCES

[1] Glenford J. Myers, Corey Sandler, Tom
Badgett, (2011). The art of software testing.
3rd edition. ISBN: 978-1-118-03196-4.

[2] Srinivas Nidhra and Jagruthi Dondeti. (2012).
Black box and White box techniques-A
Literature review. International Journal of

Embedded Systems and Applications, 2 (2).
[3] Li, L.-Y., & Chen, G.-D. (2010). A Web

Browser Interface to Manage the Searching

and Organizing of Information on the Web by
Learners. Educational Technology & Society,
13 (4), 86–97.

[4] Nevin, A. (1990). The changing of teacher

education special education. Teacher
Education and Special Education: The Journal
of the Teacher Education Division of the

Council for Exceptional Children, 13(3-4),
147-148.

[5] Inderjeet Singh and Bindia Tarika. (2014).

Comparative Analysis of Open Source
Automated Software Testing Tools: Selenium,

Sikuli and Watir, International Journal of
Information & Computation Technology. ISSN

0974-2239, Volume 4, Number 15, pp. 1507-
1518

[6] Bienfait B, Ertl P.(2013) JSME: a free

molecule editor in JavaScript.
Jcheminformatics.5:24.

6,69

14,29

12,48

12,06

6,07

9,46

7,79

8,92

0 5 10 15 20

MICROSOFT EDGE

INTERNET EXPLORER

GOOGLE CHROME

MOZILLA FIREFOX

Test 2

The best time The worst time

6,27

10,5

9,39

10,41

0 5 10 15

MICROSOFT EDGE

INTERNET EXPLORER

GOOGLE CHROME

MOZILLA FIREFOX

Average time for Test 2

Average time for 10 reps

IT Education and Practice Nogo and Škrkar

223

[7] Earley CW. CH5M3D: an HTML5 program for
creating 3D molecular structures. J
cheminformatics.2013;5:46.http://www.ncbi.
nlm.nih.gov/ pubmed/24246004. (Accessed:

March, 2018)

[8] http://www.chromium.org/chromium-
os;.(Accessed: June 1, 2017)

