
 

7th International Scientific Conference 

Technics and Informatics in Education 

Faculty of Technical Sciences, Čačak, Serbia, 25-27th May 2018 

Session 2: IT Education and Practice UDC: 004.42 
 

230 

Teaching Adaptability and Code Reuse of Web 

Applications with the N-tier Architecture: Case 

study in VS.NET 

Ljubica Kazi1*, Dragica Radosav1, Zoltan Kazi1, Evgeny Cherkashin23,  

Madhusudan Bhatt4, Amar Kansara5 
1 University of Novi Sad, Technical faculty “Mihajlo Pupin” Zrenjanin, Serbia 

2  National Research Irkutsk State Technical University, Irkutsk, Russia 
3 Irkutsk State University, Irkutsk, Russia 

4 University of Mumbai, R.D. & S.H. National College, Mumbai, India 
5 Parth Systems, Navsari, India 

* ljubica.kazi@gmail.com  

Abstract: This paper presents results in exploring research in development of adaptable software and 

teaching in this field, with special concern on using n-tier web programming as an example. The model of 

teaching n-tier web programming is based on introducing software components organized in layers (data 

layer, business logic layer, service layer and presentation layer) and sub-layers within each layer. This 

model enables adaptability of software to changes, including changes of DBMS, business rules etc. The 

proposed model is compared with existing industry standard architectures, such as MVC (model-view-

controller). The proposed approach is explained with a case study of n-tier ASPX/MSSQL web application.   

Keywords: adaptable software; n-tier programming, web programming, teaching, MVC 

1. INTRODUCTION 

Within higher education of software development, 

it is of a great importance to study issues that are 

common within industry environment. One of the 

most important groups of issues belongs to 

software change management. Therefore, it is 

very important to teach students how to create 

software architectures that provide easier changes 

of its subsystems. Such changes are frequent in 

business rules, as well in used data warehouse 

technologies (i.e. DBMS types, data formats) etc.      

Aim of the research presented in this paper is to 

propose the n-tier architecture suitable for 

teaching adaptability of software. An example that 

illustrates the proposed approach is given with the 

n-tier ASP.NET web application. 

This paper is structured as follows: second section 

explains theoretical background in software 

change/configuration management, third section 

describes related work in programming teaching, 

fourth section explains the proposed model with 

layers and sub-layers, the responding to changes 

and comparison to industrial standard MVC, fifth 

section presents an example that is used within 

classes of software engineering at University of 

Novi Sad, Technical faculty "Mihajlo Pupin" 

Zrenjanin, Serbia. Final section is conclusion. 

 

2. ADAPTATION AND REUSE CONCEPTS 

In the phase of software design and construction, 

there are two very important approaches 

(SWEBOK [1]): 

− Design/Construction for reuse, 

− Design/Construction with anticipation of 

change, i.e. suitable for adaptation. 

Concepts of reuse and adaptation are very closely 

related.  

"Construction for reuse creates software that has 

the potential to be reused in the future for the 

present project or other projects, taking a broad-

based multisystem perspective. IT is desired to 

encapsulate reusable code fragments into well-

structured libraries or components. The tasks 

related to software construction for reuse during 

coding include variability implementation with 

mechanisms such as parameterization, conditional 

compilation, design patterns etc". [1] 

"Most software will change over time, and the 

anticipation of change drives many aspects of 

software construction; changes in the 

environments in which software operates also 

affect software in diverse ways. Anticipating 

change helps software engineers build extensible 

software, which means they can enhance a 

software product without disrupting the underlying 

structure."[1] 

mailto:ljubica.kazi@gmail.com


IT Education and Practice Kazi et al. 
 

231 

According to [1], with acceptance of eight 

software evolution laws, software is considered as 

constantly evolving, with complexity growing. 

Changes occur in the software during the core 

development or maintenance. Maintenance 

activities could be categorized as: corrective, 

adaptive, perfective and preventative.  

Configuration management is "a discipline of 

technical and administrative direction and 

surveillance to: identify and document the 

functional and physical characteristics of a 

configuration item, control changes to those 

characteristics, record and report change 

processing and implementation status, and verify 

compliance with specified requirements". [1] [2] 

"Change request (CR) may be originated by 

anyone at any point in the software life cycle and 

it may include the suggested solution and 

requested priority. The type of change is usually 

recorded on the Software change request. The 

formal procedure of managing changes include 

submitting and recording change requests, 

evaluating the potential cost and impact of a 

proposed change and accepting, modifying, 

deferring or rejecting the proposed change. 

Changes may be supported by source code 

version control tools." [1] 

Therefore, the concepts of adaptation and reuse 

being followed at the design phase of the software 

development provide the basis for the following 

phases, related to the construction and 

deployment, as well as to the post-delivery 

activities. These concepts show potentials in 

conserving programming experiences for future 

related projects. 

3. RELATED WORK 

Evolution of software engineering methods and 

tools influences teaching in this field, particularly 

constant improvement in content of corresponding 

courses. Other important aspect of Software 

Engineering Teaching is methodology of the 

teaching process.  

In [3], the importance of practical engagement of 

software engineering students in teamwork within 

real-world projects is demonstrated with the case 

study.  Usual teaching practice is to include real-

world projects in the field of information systems 

development [4], i.e. enterprise application 

development [5]. The concept of practical 

enterprise application development with university 

teaching in software engineering presented in [5] 

includes lab assignments in object-oriented 

programming of n-tier web applications with use 

of web services. Since dealing with the realistic 

projects from the real world requires complex set 

of knowledge and skills, as well as going through 

the complete software life cycle, to gain 

appropriate level of details in knowledge and skills 

requires one project to be split as set of 

subprojects to be done within set of interrelated 

subjects. In [6], that approach of having one 

common project, which the student work on within 

many subjects (courses) is experimentally tested. 

Students implemented their practical work within 

a series of inter-related subject by following the 

software development life cycle: object-oriented 

systems analysis and design, data structures, 

software engineering, web programming, 

distributed web services and software 

development, software testing. This way, working 

at the same project from different aspects within 

diversity of teaching subjects/courses lead to the 

completing more complex and more realistic 

result. 

Teaching software engineering within practical 

work on the real-world projects is closely related 

to software project management (SPM), where 

related topics are included within appropriate SPM 

courses/subjects. Contemporary industrial 

standard approach to SPM is implementation of 

agile principles and methods. Experiences in 

teaching SPM with agile paradigm are described in 

[7]. One of the agile methodologies is Extreme 

programming and empirical results in teaching 

with this methodology are presented in [8]. Other 

teaching experiences in software development are 

more focused on technologies in reaching the 

agility of development by using model-driven 

approach, such as [9], and even more, – using 

code generators based on model-driven 

development [10]. Teaching in software 

engineering is, in recent years, focused on 

contents that are related to modern technologies 

within professional environments, such as cloud 

computing [11]. Close collaboration of industry 

and higher education educators and curriculum 

creators is crucial for the benefit of students to be 

ready for the knowledge and skills requirements in 

the professional development environment. The 

need to improve college programs, in aim to 

prepare students for professional work, is 

emphasized in [12]. Particularly important 

contents are related with IT governance process, 

knowledge in business domain, ability to capture 

requirements by proactive asking right questions, 

quality of design based on experiences, peer or 

supervisory review of code with suggestions on 

quality improvements etc. Particularly important is 

the area of configuration management, changes of 

code, compliance with existing architecture and 

documentation [12].    

4. THE PROPOSED N-TIER TEACHING MODEL 

The proposed approach to teaching the 

adaptability and code reuse in application 

development is based on practical work in 

software development with n-tier object-oriented 

architecture and service-oriented architecture 

(similarly to [5], [13]), with applying component 



IT Education and Practice Kazi et al. 
 

232 

paradigm (separate layers belong to independent 

components i.e. projects that are coded and build 

independently from other layers, but that could be 

integrated with referencing (References – adding 

link to DLL or Service References – adding alias to 

Web service URL). This model enables (if needed 

within change management) replacements of 

components, easy changing in particular 

component, teamwork development and 

improvement of overall software quality, as well 

as the code reuse. 

4.1. Layers and sub-layers 

The proposed model of the n-tier software 

architecture is presented in the Table 1. The first 

column presents an n-tier software layer and 

second column is related to sub-layer. The 

proposed sub-layers implementation is presented 

in the third column with the example of VS.NET 

(Visual Studio .NET) web application and other 

executable components in the architecture. 

Table 1. The proposed model of n-tier web 
application architecture in VS.NET 

LAYER SUB-LAYER 

VS.NET 

executable 

component  

Presentation 

Layer 

User interface ASPX 

Presentation 

logic 
DLL 

Services Layer 
Web services ASMX  

Mapping library DLL 

Business logic 

layer 

Business rules 

class library 
DLL 

Business objects 

class library 
DLL 

Data layer 

Semantic-

oriented class 

library 

DLL 

Technology-

dependent class 

library 

DLL 

Relational 

database 

Stored 

procedures 

Views DBMS 

Tables 

Data files XML  

Executable components from Table 1. are: 

− ASPX – ASP.NET Web form file extension 

− ASMX – VS.NET web service (SOAP type) file 

extension 

− DLL – Dynamic Link Library, file extension of 

executable form of class library 

Presentation layer consists of: 

− User interface, implemented in the example as 

Web forms application ASPX. Implementing 

web forms requires studying html + css 

(which are the essential part of any web page, 

as well as undelying structure of ASPX web 

form), with necessary programming part (C#) 

that enables access, data retrieval and basic 

instantiation and using presentation logic 

classes, i.e. invocation of appropriate class 

methods.   

− Presentation logic, encapsulated within a 

separate component, i.e. Class Library (DLL). 

It contains the code for data capturing and 

transformations, validation and preparation for 

presenting in the user interface. The 

presentation logic instantiates classes from 

lower layers, such as services layer, business 

logic layer and data layer. 

Services layer consists of: 

− Web services, which are consulted as remote 

raw data retrieval services (from other data 

sources, such as XML or other database) or 

remote business logic services, such as 

enforcing business rules processing or 

retrieving constraints (stored in the XML form) 

needed for local business rules processing. 

− Mapping service, encapsulated within Class 

Library (DLL), provides integration of other 

layers, i.e. data exchange between classes 

based on different data models or coding 

systems. 

Business logic layer consists of: 

− Business objects, implemented as separate 

Class Library (DLL), where classes are named 

by the terms of the business domain actors, 

entities or business processes and the 

implementation logic is based on using 

methods from the data layer classes. 

− Business rules are implemented enforced from 

separate business-rules classes or as business 

objects methods and their mutual interactions. 

Data layer consists of: 

− Semantic-oriented class library (DLL) which 

consists of three types of classes. For each 

table in relational database there are three 

classes: a) Single-occurance class (contains 

private attributes that correspond to table 

fields from the relational database, as well as 

corresponding public properties implemented 

with set/get methods), b) List class, which 

contains typed  list of "single-occurance" 

classes, c) DB class, which contains methods 

for basic CRUD (Create, Read, Update, Delete) 

operations upon appropriate table from the 

database. These methods could be 

implemented with using diversity of methods 

(using SQL client classes and methods with 

SQL queries or stored procedures or using 

technology-dependent class library). 

− Technology-dependent class library (DLL) 

which is semantic-independent. The 

technology dependence occurs because of 

using standard classes  (from appropriate DB 

API) for the connection to the database and 

executing active SQL queries (directly or with 

using stored procedures). The technology 

dependent classes consist of the database 

connection, table and transaction classes, 



IT Education and Practice Kazi et al. 
 

233 

which are implemented upon standard 

libraries: SQLClient (for MSSQL server DBMS), 

OleDB (for MS Access DBMS) or ODBC (other 

DBMS types). This technology-dependent class 

library encapsulates the API-dependent source 

code with general names (of classes, 

attributes and methods) and therefore 

provides ease of replacement with other DLL 

with the same names, but different underlying 

technology-dependent implementation. 

Example: General class name is Connection, 

while DB API for MSSQL DBMS (SQLClient) 

name  for connection is SQLConnection. 

In broader definition, data layer could include: 

− Relational database, that consists of data 

tables related with foreign key constraints, as 

well as stored procedures and views. Stored 

procedures and views consist of basic CRUD 

(CreateReadUpdateDelete) SQL queries, which 

provide faster queries processing. Including 

stored procedures and views in Semantic-

oriented class library methods improves data 

retreival and processing performances. 

− Data files, such as XML, which represent 

source of raw data or constraints queried from 

business rules.    

4.2. Responding to changes 

The proposed model supports changing in: 

− The interface type, since presentation logic 

captures the logic of the application and 

invoking lower layers 

− Coding standards between different modules 

and applications, with mapping service 

− Data responsibilities among diversity of 

institutions, which is provided by using web 

services 

− Business rules, which is enabled with 

allocating business rules algorithms within 

appropriate business objects or separate 

classes related to business rules enforcing, 

− Business rules constraints, provided by web 

services or externally stored constraints in 

XML, 

− DBMS type, which is enabled by separation of 

semantics and technology. By changing DBMS, 

it is sufficient to replace the technology-

dependent DLL with other technology-

dependent DLL with the same name of class 

library, classes, attributes and methods. This 

way, semantic-oriented class library will not 

require any changes in the source code, but 

only to be rebuild, because of the change in 

the referencing DLL.   

4.3. Comparison of the proposed model with 

standard pattern MVC  

In contemporary industrial software development, 

some of the most important principles include: 

− Agile development, i.e. quick adaptation of 

software to user requirements that evolve 

during the development process, which 

require an architecture suitable for frequent 

changes 

− Teamwork development, which leads to the 

need of separation of the software into 

modules that could be assigned to diversity of 

teams or team members, with parallel 

development (which supports decrease in 

development tim) and specialization of 

teams/members, which encourages quality of 

production 

− Standard orientation, which requires all team 

members follow standard procedures, coding 

conventions, industrial models and design 

patterns etc. with the outcome in quality of 

development products and services. 

One of the standard software structuring approach 

include MVC architectural design pattern. The 

concept of responding to client's request in MVC in 

ASP.NET (according to [13]) is presented in the 

Figure 1. Client's htpp request is received by the 

controller class (derived class from standard 

System.Web.MVC), which queries model classes 

for data read, update, insert or delete. After data 

retrieval or change, the model gives data to the 

controller, which prepares the necessary output 

and chooses appropriate view as response (in the 

form of web page to be presented to client).     

 

Figure 1. MVC structure and collaboration of 
components in responding to http 

request (according to [13]) 

Comparison of the proposed n-tier model and MVC 

regarding adaptability to changes and reausability 

of code is presented at Table 2 and explained 

below: 

− Adaptability to changes is provided as in  MVC 

the view is separated from application logic 

and data. This allows making changes in 

separate elements. The issue is that the 

controller captures all the application logic and 

the model integrates data model semantics 

and DBMS-dependent technology in CRUD 

support (example: Entity framework 

generated classes include both semantics from 

relational database tables and underlying 

technology of MS SQL Server incorporated in 

generated Entity framework code). The 

proposed n-tier model promotes separation of 

sub-layers and separation of semantics from 

the (DBMS-dependent) technological 

implementation. In this way, the proposed n-



IT Education and Practice Kazi et al. 
 

234 

tier approach is more suitable for change 

implementation and supports adaptability 

more flexible.  

− Reusability of code is provided thanks to MVC 

approach, where the created model and 

controller could be used with other type of 

view. One issue with MVC is that the controller 

captures all the application logic, which makes 

it harder to separate, reuse and adapt 

particular parts.  Another issue with MVC is 

related with very tight dependency of 

semantic and technology in the model 

component. In the proposed n-tier model, 

reusability is supported for all layers and sub-

layer, particularly in the data layer, by 

separation of technology-dependent and 

semantically independent class libraries, which 

allows using the same universal technology-

dependent class library for any other project. 

Business rules and business objects classes 

are reusable for similar software solution, 

which is particularly imporant for software 

product lines support. Even the presentation 

logic, captured within the class library, could 

be reused with any other user interface.  

Table 2. Comparison of MVC with the proposed n-
tier model 

LAYER SUB-LAYER MVC 

Presentation 

layer 

User interface View 

Presentation logic Controller 

Service layer Web service 

Mapping service 

Business logic 

layer 

Business rules 

Business objects Model 

Data Layer Semantic-oriented 

class library 

Technology-

oriented class 

library 

5. EXAMPLE OF VS.NET APPLICATION 

Illustration of the proposed model is given in this 

section, with the example constructed within 

Software engineering classes at University of Novi 

Sad, Techical faculty „Mihajlo Pupin“ Zrenjanin. 

Semantics of the example is related to records on 

teaching staff at the Unviersity school. The web 

application is developed to provide basic 

enterprise software functions, such as data entry, 

tabular presentation with filtering, updating, 

deleting and printing. 

Within implementation of these software 

functions, students created user-interface project 

of Web forms type ASPX and parallely created 

class library projects for appropriate sub-layers. 

One DLL file of a sub-layer class library project is 

attached (using References section in VS.NET IDE) 

in the projects of other sub-layers. Web services 

(ASMX) are created as separate projects and 

attached to other sub-layers by using Service 

Reference section in VS.NET (assigning alias to 

URL of previously activated Web Service in 

localhost). Figure 2. shows the user interface of 

the ASPX application – the page for the entry of 

data related to the new teaching staff member.  

 

Figure 2. Teaching staff data entry page of an 

example user interface 

Drop-down list (combo) gets, at the ASPX page 

(code presented at Figure 3.), the data from the 

class, which presents the presentation logic class 

dedicated to support this page (i.e. form in user 

interface).  

private void NapuniCombo() 
{ 
DataSet dsZvanja = new DataSet(); 
dsZvanja=objFormaNastavnikUnos.DajPodatkeZaCombo(
); 
int ukupno = dsZvanja.Tables[0].Rows.Count; 
ddlZvanje.Items.Add("Izaberite..."); 
for (int i = 0; i < ukupno; i++) 
{ 
ddlZvanje.Items.Add(dsZvanja.Tables[0].Rows[i].It
emArray[1].ToString()); 
} 
} 

Figure 3. The procedure for filling drop-down list 
at the page from Figure 2. 

The concept of presentation logic classes 

organization is that each page at user interface 

has appropriate class in the presentation logic, 

that support that page. Figure 4. presents list of 

classes in the presentation logic that are 

developed, within classes in Software engineering,  

for the purpose of this example. 

 

Figure 4. List of classes within presentation logic 



IT Education and Practice Kazi et al. 
 

235 

For the page, presented in Figure 2, the 

presentation logic class is presented with the code 

(only attributes and methods signatures are 

presented) presented at Figure 5. The role of the 

presentation logic class is demonstrated with this 

example: 

− Getting the data from the user interface in the 

exact form as they are entered,  

− Transformation of data suitable for lower sub-

layers,  

− Preparation of data for presentation (such as 

data needed for drop-down list filling)  

− Verification of the entered data (checking 

mandatory fields, uniqueness and invocation 

of methods from classes from lower layers, 

such as to check business rules or to start 

saving of the data). 

 

Figure 5. The code of the presentation logic class  

Uniqueness of the data that were assigned from 

the user interface to presentation logic attributes 

is checked within the appropriate method of the 

presentation logic class, which invokes method 

from the DB class from the data layer (code 

presented at Figure 6). 

Checking compliance of the data assigned to the 
presentation logic attributes with the business 

rules is performed within the method in 
presentation logic that invokes the method from 
the business logic layer (code presented at Figure 

7). 
 

 
Figure 6. Method of presentation logic for data 

uniqueness checking by invoking DB 
class method 

 
Figure 7. Method of presentation logic for 

business rules checking by invoking  
class method from the business logic 
class library 

Saving data, that were assigned from the user 

interface to presentation logic attributes, is 

performed with appropriate method from the 

presentation logic class, which invokes the 

appropriate method from the DB class from the 

data layer (code presented at Figure 8). 

 
Figure 8. Method of presentation logic for saving 

data by invoking DB class method 

The business rule that is checked is in this 

example related to the constraint on the maximal 

number of employees for certain teaching 

position, formulated in the form of  

IF (condition) THEN (action). 

IF (number of existing teaching staff is lower than 

maximal allowed number of teaching staff) THEN 
(hire a new teaching staff member). 



IT Education and Practice Kazi et al. 
 

236 

Business rules application algorithm is presented 
at the Figure 9. and appropriate code is presented 
at Figure 10. 

 
 

 
Figure 9. Activity diagram of the business rule with invocation of methods from other layers 

 
Figure 10. Method for business rules checking within the business logic class 

6. CONCLUSION 

Constant change in the information technologies 

requires adaptation of the teaching contents and 

improvement of teaching methodology. In the 

software engineering teaching, contemporary 

technologies and industry practices lead university 

teaching toward agile development, teamwork, 

programming of distributed software systems etc. 

Business rules method from the 

business logic class

[YES]

[NO]

Computing current number of teaching staff of particular position

DB class

Database

Mapping between 2 different coding systems from database and web service

Retrieving maximum allowed number of teaching staff in the same position

Web service

XML constraints

Comparing current number and maximum allowed number

Is hiring allowed?

Saving data about new teaching staff member

Mapper class from service layer



IT Education and Practice Kazi et al. 
 

237 

Aim of this paper is particularly focused on the 

teaching issues in development of software that is 

suitable for adaptation to changes. Design and 

construct reusable code is closely related to the 

suitability for code change and the teaching model 

that is proposed in this paper addresses both 

issues.  

This paper proposes an n-tier model to be used in 

teaching code adaptation and reusability of code, 

while comparing the proposed model with the 

MVC, the industrial standard approach. As an 

illustration of the proposed model, an example of 

n-tier VS.NET web application is presented with 

user interface page, code segments and an 

example of a business rule compliance checking 

algorithm. The presented example is used at 

Software engineering classes at bachelor 

(undergraduate) level of study in Information 

Technology Engineering at University of Novi Sad, 

Technical faculty “Mihajlo Pupin” Zrenjanin, 

Serbia.  

The presented n-tier model is not a complete 

model of enterprise-oriented professional 

software, but is suitable for the undergraduate 

study in enterprise-oriented software 

development. More complex teaching aspects of 

professional software engineering should include 

workflow and business rules management 

systems, with automated reasoning over 

externally stored rules written in formal language 

and data obtained from the database and the user 

interface. Such advanced (non-covered in this 

model) topics are included at master-level of 

studies at the University of Novi Sad, Technical 

faculty “Mihajlo Pupin” Zrenjanin, Serbia.  

Comparison of the proposed model is made 

regarding teaching practice in India and Russia 

and the proposed model is recognized as similar 

that is taught in these countries. The proposed 

model is also compared with industry experiences 

in India and it is concluded that it enables 

students to understand software component 

paradigm and components integration, as well as 

techniques for developing a reusable and 

adaptable software in a way that prepares 

students for the industry practice, by making 

students understand basic structures and 

principles and empowering them to understand 

industrial frameworks.  

REFERENCES 

[1] IEEE (2014). SWEBOK, Guide to the Software 
Engineering Body of Knowledge, Version 3.0 

[2] ISO/IEEE (2010). ISO/IEC/IEEE 24765:2010 
Systems and Software Engineering—
Vocabulary, ISO/ IEC/IEEE. 

[3] Gnatz, M., Kof, L., Prilmeier, F., Seifert, T. 
(2003). A Practical Approach of Teaching 
Software Engineering, Proceedings of 16th 
Conference on Software Engineering 

Education and Training, IEEE Computer 
Society, ISBN 0-7695-1869-9, pp 120-128. 

[4] Ivanovic, M., Todoric-Vukasin, D., Budimac, 
Z. (2009). Information system topics for 

studies in software engineering, Proceedings 
of the International Conference on Computer 
Systems and Technologies – CompSysTech, 

ACM, 2009, pp IV.15-1, IV.15.6 

[5] Withhinghill, D., Lutes, K. (2011). Teaching 
Enterprise Application Development: 
Strategies and Challenges, Proceedings of the 

SIGITE Conference, ACM, October 20-22, 
2011, West Point, New York, USA   

[6] Iyengar, S.R. (2009). Teaching Enterprise 

Software Development in Undergraduate 
Curriculum, Proceedings of the SIGITE 
Conference, ACM, October 22-24, 2009, 

Fairfax, Virginia, USA 
[7] Fitsilis, P., Lekatos, A. (2017). Teaching 

software project management using agile 
paradigm, Proceedings of 21st Pan-Hellenic 

Conference on Informatics, Larissa, Greece, 
September 2017 (PCI’17). 

[8] Bergin, J., Caristi, J., Dubinsky, Y., Hazzan, 

O., Wiliams, L. (2004). Teaching Software 
Development Methods: The Case of Extreme 
Programming, Proceedings of SIGCSE’04, 

ACM, March 3-7, 2004, Norfolk, Virginia 

[9] Kuzniarz, L., Martins, L.E.G. (2016). Teaching 
Model-Driven Software Development: A Pilot 
Study, ITiCSE’16 Working Group Reports, 

ACM, July 09-13, 2016, Arequipa, Peru  
[10] Schmidt, A., Kimmig, D., Bittner K., 

Dickerhof, M. (2014). Teaching Model-Driven 

Software Development: Revealing the “Great 
Miracle” of Code Generation to Students, 
Proceedings of the Sixteenth Australasian 

Computing Education Conference (ACE2014), 
Auckland, New Zealand.  

[11] Trinta, F.A.M., Santos, E. (2017). Teaching 
Software Development for the Cloud: An 

Experience Report, Proceedings of the 
SBES’17, September 20-22, 2017, Fortaleza, 
CE, Brazil 

[12] Vandever, K. (2008). Teaching the Business 
of Software Development, SIGCSE Bulletin, 
Vol. 40. No 2, 2008. 

[13] Microsoft. Application Architecture Guide 2nd 
edition. https://msdn.microsoft.com/en-
us/library/ee658109.aspx [visited: April 10, 
2018]. 

 

https://msdn.microsoft.com/en-us/library/ee658109.aspx
https://msdn.microsoft.com/en-us/library/ee658109.aspx

