

8th International Scientific Conference

Technics and Informatics in Education

Faculty of Technical Sciences, Čačak, Serbia, 18-20th September 2020

Plenary Session Keynote paper/Original research paper

UDC: 378:004.4

15

Program Translators Higher Education and

Application of PP Simulator Educational Tool

Ljubica Kazi1*, Dragica Radosav1, Ivana Berković1, Narendra Chotaliya2, Madhusudan Bhatt3
1 University of Novi Sad, Technical Faculty “Mihajlo Pupin”, Zrenjanin, Serbia

2 Saurashtra University, Rajkot, MP Shah Arts & Science College, Surendranagar, India
3 University of Mumbai, K.C. College, India (retired)

*ljubica.kazi@gmail.com

Abstract: Software engineering higher education usually includes courses related to program translators

(compilers/interpreters), which cover topics: compiler construction, formal grammars, programming

languages formal grammars and other formal representations (such as extended Backus-Naur Form),

automata theory etc. Aim of this paper is to present overview of the current state in higher education of

program translators and to describe the pragmatic approach that has been established at Technical Faculty

“Mihajlo Pupin” Zrenjanin, Serbia with creating and using PP simulator educational tool. The developed tool

helps students learn about the lexical, syntax and semantic aspect of programming code quality, which is

to be determined by the compiler simulator “PP simulator”. Teaching results from Technical Faculty “Mihajlo

Pupin” Zrenjanin, Serbia at course Program Translators were also presented and discussed.

Keywords: program translators, higher education, educational tool, simulator, lexical analysis, syntax

analysis, semantic analysis.

1. INTRODUCTION

Following industrial trends, higher education needs

to adapt in aim to enable students to have

appropriate knowledge and skills needed for their

professional engagements after graduation. During

study time, students could also improve their

knowledge/skills by being included in professional

environments with internship and competitions

organized by companies.

Modern software industry emphasizes agility of

software development process and software

product quality with having implemented

constantly changing user requirements. These

directions shift focus from using traditional

programming languages to frameworks. Software

frameworks and design patterns enable faster

production and better quality of software products.

Software frameworks are based on native (core)

programming languages, but they have their

specific grammars.

Regardless of native programming languages or

frameworks usage, software quality particularly

addresses detection and correction of possible code

errors – lexical, syntax, semantic and run-time. In

professional and educational programming

environment, program translators (compilers,

interpreters) are used for the purpose of translating

programming code from higher programming

language into machine code, while checking the

code for errors.

This paper presents educational content, methods

and results in teaching Program Translators

(Serbian: name: “Programski prevodioci”,

abbreviated: PP) as a higher education course at

Software Engineering bachelor studies at University

of Novi Sad, Technical Faculty “Mihajlo Pupin”

Zrenjanin, Serbia (abbreviated: @TFZR) in school

year 2019/20.

The rest of this paper is organized as follows.

Section two presents background and related work,

section three describes higher education of

program translators in Serbia, section four presents

improvements of teaching Program Translators

@TFZR with teaching content, methods, materials,

assessment in school year 2019/20, section five

describes PP simulator tool, section six presents

teaching results including students experiments,

while section seven presents conclusions.

2. THEORETICAL BACKGROUND AND

RELATED WORK

2.1. Bloom’s taxonomy

Benjamin Bloom (together with collaborators)

published in year 1956 a framework for

categorizing educational goals – Taxonomy of

Educational Objectives, known as Bloom’s

taxonomy [1]. Initial Bloom’s version explains main

categories: knowledge, comprehension,

application, analysis, synthesis, evaluation.

Revised taxonomy has been performed by a group

mailto:*ljubica.kazi@gmail.com

Plenary session Kazi et al.

16

of cognitive psychologists, curriculum theorists and

instructional researchers, testing and assessment

specialists in year 2001 [2] [3]. The authors of the

revised taxonomy emphasize dynamism, by using

verbs and gerunds to label categories and

subcategories. This way, the attentions is drawn

away from the “static” notion of educational

objectives in Bloom’s original title. “These action

words describe the cognitive processes by which

thinkers encounter and work with knowledge [3]:

remember (recognizing, recalling); understand

(interpreting, exemplifying, classifying,

summarizing, inferring, comparing, explaining);

apply (Executing, implementing); analyze

(differentiating, organizing, attributing); evaluate

(checking, critiquing); create (Generating,

planning, producing). “In the revised taxonomy,

knowledge is the basis of these six cognitive

processes, but authors created a separate

taxonomy of the types of knowledge used in

cognition: factual knowledge, conceptual

knowledge, procedural knowledge and meta-

cognitive knowledge.” [3]

2.2. Program translators

“On the very earliest computers, programs were

written and entered in binary form. Some

computers required the program to be entered one

binary word at a time, using switches on the front

panel of the computer. Because of that, the size

and the complexity of the programs were severe

limited, debugging was very difficult task and

development of programs was very difficult and

error prone. The idea was to use computer itself to

ease the programmer’s work, by translation from a

more human-readable form of the program into

executable binary code.“ [4]

There are several forms of program translation [4]:

from assembly language code to binary coded

instructions; from higher level programming

languages to executable binary coded programs

performed by compilers and interpreters;

preprocessing with transformation from one higher

level programming language to other lower level

programming language, and then compilation is

performed.

Programming languages grammars are presented

usually with Extended Backus-Naur Form (EBNF)

and syntax diagrams. ISO/IEC 14977 standard

defines the elements and procedures of using EBNF

[5]. Syntax diagrams [6] present graphical

representation of programming language

instructions syntax.

Programming languages include components [4]:

• Lexical – lexicon is a list of all legal words,

together with information about the word

(meaning, role);

• Syntax – define the form and structure of legal

expressions of the language;

• Semantic – deals with the meaning of the

expressions.

Formal grammars are used to present certain

aspects of programming languages and translators,

where Chomsky’s linguistic-related research has

created roots to this field [7].

2.3. Related work

Program translators’ research has results closely

tied with industrial advancements. In early years of

higher-languages development, issues that

researchers dealt with were related to special

meta-languages for program translator

construction [8], effectiveness [9], [10] and

performances [11].

Recent program translators-related research and

practical results deal with more advanced

technologies, such as transformation from one

higher language to another [12], multi-syntax

programming languages [13] and embedded

systems programming [14].

Research regarding programming languages

education includes results in teaching formal

languages [15] and comparative study of teaching

two programming languages with the use of special

tool for their automated translation [16].

3. HIGHER EDUCATION OF PROGRAM

TRANSLATORS IN SERBIA

Higher education in Serbia in the domain of

information technologies includes Program

Translators at Bachelor and Master studies. In this

section educational content will be presented from

three Serbian Universities:

1. University of Nis, Faculty of Electronics –

bachelor studies course [17].

2. University of Belgrade, Electro-technical

Faculty – Bachelor studies course [18] and

Master studies course [19].

3. University of Novi Sad, Faculty of Technical

Sciences – bachelor studies course [20].

Educational contents at all faculties include: Formal

languages, Automata theory, Lexical, Syntax an

Semantic analysis of code, Symbol tables,

Intermediate code generation and optimization,

Code optimization, Program translators generators,

Memory management, Virtual processors and

machines.

The theoretical contents were illustrated at

practical laboratory work by using simplified

programming languages - MiniC [20] and

MikroJava [18]. In aim to enhance their grammars,

students use program translator generator tools,

such as Flex [21], Bison [22], YACC [23] etc.

Plenary session Kazi et al.

17

4. TEACHING AND ASSESSMENT IN COURSE

PROGRAM TRANSLATORS @ TFZR in

2019/20

In aim to encourage students to be more active,

gain more knowledge and have better results in

assessment (comparing to previous years students’

results), several aspects of education have been

improved by the new subject professor Ljubica Kazi

(assigned to theoretical and practical classes

starting from school year 2019/20 @ TFZR):

• Teaching content has been put into a context of

the modern industrial environment and other

practical-oriented broader areas.

• Teaching methods and knowledge/skills

assessment have been designed according to

Bloom’s taxonomy, particularly to be adaptable

to students’ abilities and preferences, as well as

to improve interactivity with students during

teaching and learning period.

• Specific educational tool (“PP simulator”) has

been developed as an educational tool - to

enable students’ experiments with compiler’s

work simulation.

4.1. Teaching content

In aim to enable students have better

understanding of the abstract terms, defined as a

core content of the course, the idea was to present

the content within the broader modern industrial

and practice-oriented context. This way, students

could grasp the importance and usability of the

presented theoretical concepts. Having this goal in

mind, the focus on the most important topics of

subject was not missed:

• Programming language grammar;

• Programming code errors;

• Compiler construction.

Background topics were presented at theoretical

and practical lessons and linked with the core topic:

• Structured and object-oriented programming;

• Analysis and documenting of applicative

software with UML;

• Software development with class libraries

creation and linking;

• Programming integrated development

environments;

• Abstract presentation of program specification

(algorithms, flow diagrams, UML models).

Core theoretical topics included in teaching were

organized as the sequence of logical flow, starting

with topics previously familiar to students:

1. Types of programming languages, computer

architecture, machine-dependent languages,

definition of program translators;

2. Programming languages grammar – general

linguistics and computer-based linguistics,

formal languages and grammars, Chomsky’s

formal grammars categorization, forms of

presenting programming languages grammars

(EBNF, syntax diagrams);

3. Programming code errors – errors

categorization (lexical, syntax, semantic, run-

time);

4. Basics of functionality and construction of

compilers – goals of compilers, compiler work

phases, compiler architecture components,

compiler working process variants, compiler

components usability and functionality

principles;

5. Automata theory – definition and categorization

of automata, characteristics, using automata in

language processing, Turing machine and

Universal Turing machine.

Core practical topics in the laboratory work

included:

1. Examples of compiler (C# desktop application

with dynamic link libraries, i.e. class libraries)

and interpreter work (PHP web application and

XAMPP) in program errors detection, error

types, messages, error handling, exceptions,

validations of user inputs;

2. EBNF presentation of programming language

grammar (C#, html, PHP)’

3. Compilation of structural and object-oriented

code

4. Tools for program translator creation, creating,

adjustments and using PP simulator as an

educational tool.

Additional topics that were included in teaching

content were selected in aim to put the core content

into broader modern industrial and practice-based

context:

• Code writing conventions and programming

style,

• Test-based specification in agile software

development,

• Domain knowledge and ontology languages,

domain presentation, RDF,

• Software interoperability,

• Software frameworks and specific grammars,

comparing native programming language and

framework grammar,

• Cross-compilers,

• Linkers and module dependency,

• Software quality – standards, aspects (process,

product, software in use), coding conventions

and heuristics, programming style, code

refactoring, software testing, agile test-based

requirements specification, error processing in

program code (Exceptions), principles of object-

oriented program organization (SOLID),

software performances, software metrics,

structure aspect of software quality, code

optimization.

Plenary session Kazi et al.

18

4.2. Teaching methods and materials

Teaching period in school year 2019/20 for the

course Program Translators (@TFZR) is, according

to accreditation, planned for third year of study at

Software Engineering Bachelor studies, for the

“summer semester”, starting in February and

lasting to end of May. According to accreditation,

students attend two teaching hours of theory and

two teaching hours of practical laboratory work.

School year 2019/20 was specific due to

appearance of Covid-19 (Corona virus) pandemic

and the teaching period could be divided into 3 sub-

periods:

1. Pre-Corona virus lockdown period – with regular

classes, where students attended theory and

practical work classes in classroom and

computer lab. Theoretical classes were

performed with oral and PowerPoint

presentations (Figure 1), having theoretical and

illustrative contents. In empirical part, practical

work was performed as demonstrative analysis

of software solutions, tools, grammars and

related exercises that students were obliged to

do with assistance of teaching staff. During this

period, high level of interactivity has been

performed at both theoretical and practical work

and students’ activities in discussions and

solving problems were awarded with bonus

points.

Figure 1. Example of PowerPoint slides

2. Corona virus lockdown period – online lessons,

where electronic material (with theoretical

content and practical content with illustrations

of software solutions – source code of

applicative software with class libraries and PP

simulator, demonstrations with tutorials that

explain the process and elements of solutions)

was put on TFZR website at on-line teaching

section within the course pages [24]. Students

were offered to register at Facebook group

PP@TFZR to receive frequent notifications about

news and new materials that were submitted to

on-line teaching section of Program Translators

page at faculty website. Home works with

practical orientation were included to replace

the accreditation-defined “class attendance”

points. To encourage students’ interaction and

activity, the aim was to have better learning

outcomes by having students engaged during

lockdown. There were two home work

assignments:

Homework 1 - input material was object-

oriented applicative software (finalized

version as continuing from regular practical

classes) and the assignment was to create

UML models to document the solution. Aim

of this homework was to have students

study the details of the applicative

software, to understand and be able to

make further analysis in next home work.

Homework 2 - input was the same software

solution as in home work 1, but with errors.

The task was to start compiler and get

report on errors, document lines of codes

with errors, categorize errors, explain

causes and correct them. The goal of

second home work was to have students

prepared for mid-term exam (with similar

assignments).

3. Post-Corona virus lockdown period – elective

classes, i.e. not mandatory classes. Students

that wanted to attend, had to register for

additional regular classes in classroom, with

hygienic safety measures implemented. These

classes were used for additional theoretical and

practical explanations of on-line contents. These

classes also had high level of interactivity with

discussions, demonstrations of tools usage,

students’ questions and presentations of

students’ work.

4. Students learning period – work on their home

works, projects and preparation for mid-term

exam, as well as learning theoretical

foundations. Practical learning work included

empirical work with exercising in using,

changing or creating program translators as

tools, experiments with PP simulator work and

other tools.

As a summary, during whole semester, teaching

methods were selected in aim to increase students’

attention and activity, so they included:

presentations, illustrations, demonstrations,

empirical work (experimental, practical work).

Special emphasize was put on preparation of

teaching materials, which included:

• Power point presentations (examples presented

at Figure 1);

• Theory text book;

• Handbook for practical work assistance;

• Simulation educational tool “PP Simulator”

(Presented in section 5).

It is important to emphasize that theory text book

was created to support only the core concepts of

the course. Practical handbook included

explanations, tutorial and examples for home

Plenary session Kazi et al.

19

works, mid-term exam and project, as well as other

topics included in core content. This way, students

were given the essential source to prepare for all

pre-exam elements and final theoretical exam. The

books did not include additional content

(background or additional industry/practical

oriented content) in aim to avoid overload. The

background and additional industry/practical

oriented content were only presented during

teaching time as illustrative for motivational and

better understanding reasons. Knowledge in these

fields was outside of the course boundaries, so the

list of potential exam questions did not include

these topics.

4.3. Knowledge/skills assessment methods

According to accreditation, course entitled

“Program Translators” (PP@TFZR) includes three

mandatory types of knowledge assessment:

• Mid-term exam (practical);

• Project (practical);

• Final exam (theoretical).

According to accreditation, in the grading points

structure, the attendance at classes is also valued

with certain points, but it does not encourage

students to take active role in knowledge and skills

development. Considering activity of students an

important aspect of grading, additional bonus

points were given to students that were

collaborative in theory and practical work

discussions or presented creativity and

independence, preciseness and high level of details

orientation during home works and regular class

works.

Having enhanced Bloom’s taxonomy as a starting

point [1] [2], the assessment methods were

designed at PP@TFZR to cover appropriate

categories from the taxonomy (Table 1).

Table 1. Categorization of knowledge/skills and

appropriate assessment types at

PP@TFZR

Revised

Bloom’s

taxonomy

category

Type of knowledge/skills

assessment at PP@TFZR

Create Practical project

Evaluate Mid-term practical exam

Analyze Mid-term practical exam

Apply Practical project

Understand Mid-term practical exam

Theoretical final exam

Remember Theoretical final exam

Mid-term exam was organized to achieve pragmatic

goal – to make students be able to detect program

code errors, to classify them, detect causes and

perform appropriate changes in aim to solve the

problem.

Figure 2. presents an example of mid-term exam

assignment, where students were given a software

user interface, program code and compiler report

about errors as input material.

 The source code was the same one used for home

works, but errors were made different. This way,

students that regularly were active in home works

could easily recognize code segments and benefit

in faster tasks solving. Students task was, similar

to second home work, to make classification of

errors, explain them and provide solution with

correctly written program code. Other type of

assignment was to have correct program code and

to make intentional errors of some type – lexical,

syntax, semantic or run-time.

Figure 2. Example of mid-term exam assignment at PP@TFZR in 2019/20 school year

Plenary session Kazi et al.

20

Project as a pre-exam practical work is designed to

enable students to create, use or change a software

solution in one of two mayor categories (elective):

1. Applicative software for certain problem domain

2. Compiler simulator that will have the

functionality of analyzing lexical, syntax and

semantic errors in program code segments or

lines.

In aim to enable students to choose type of project

(according to their self-estimation of knowledge,

skills, available time, abilities, as well as their

preferences/interests), there were 10 types of

projects designed and offered to students to choose

(with appropriate material and examples that are

available for each type of project), as presented at

Table 2.

Table 2. Types of students’ projects at PP@TFZR

in 2019/20 school year

TYPE EXPLANATION OF PROJECT TYPE

1 Applicative desktop software, C#, using

previously created Dynamic Link Library (DLL)

for database connection and data operations,

only changing an available example to different

domain

2 Applicative desktop software, C#, using ready-

made DLL for database connection, creating new

DLL for data manipulation, changing an available

example to different domain

3 Using compiler generator, for example GOLD

[25], to analyze program code segment

4 Using compiler generator FLEX, BISON over the

Mini C language, to expand the language

grammar

5 Comparing grammars of two programming

languages (e.g. C# and Java) with two

applications over the same domain, with/without

using database in the applicative software

6 Improving PP simulator to expand abilities to

perform syntax and semantic analysis of

program code – C# programming language

7 Improving PP simulator to expand abilities to

perform syntax and semantic analysis of

program code – other programming language

(i.e. Java)

8 Creating program code analyzator for the

programming language

9 Creating program code analyzator for the

language used in programming (such as CSS,

XML, JSON…)

10 Comparison of native programming language

and framework with the example of applicative

software

In any of these cases, software is created within

certain development environment, which includes

mandatory use of compilers - to detect errors and

create EXE (executable file for desktop application)

and DLL (Dynamic Link Library with classes) files.

As part of projects, students were assigned task to

create errors intentionally, to have them

categorized and corrected. If the PP simulator is

chosen (project type 6 or 7), there were two types

of errors to make intentionally:

1. Errors in program code line that represent an

input to PP simulator (lexical, syntax,

semantic);

2. Errors in PP simulator itself as an application

(lexical, syntax, semantic and run-time).

5. PP SIMULATOR TOOL

During school year 2019/20 a tool for analysis of

program line or segment has been developed by

Ljubica Kazi at PP@TFZR. It was named “PP

simulator”.

PP simulator is able to analyze lexical, syntax and

semantic aspect of quality of a program code line

(Figure 3) and program code segment (Figure 4).

Work of PP simulator is based on:

• Predefined table of characters, that could be

recognized as valid and categorized.

• Predefined table of words, i.e. character

sequences that could be recognized and

replaced with tokens.

• Predefined table of semantic patterns,

considered appropriate syntax and semantic

form.

In aim to make “PP simulator” work for particular

programming language, it is necessary to have

these tables filled with particular details related to

the programming language grammar. This way, “PP

simulator” is made ready to act upon the

predefined grammar.

The process of “PP simulator” work and the

principles of the tool function is described in

sequence of automated actions the tool performs:

1. Recognition of characters and comparing with

table of acceptable characters – lexical

analysis.

2. Program line/segment reconstruction,

eliminating blanks (space), line feed and

carriage return symbols.

3. Recognition of words (lexeme) and comparing

with table of acceptable words that could be

replaced with tokens – lexical analysis (Figure

4). At the same time, recognized words are

replaced with tokens and finally, the program

code line is replaced with a tokenized

sentence.

4. Comparing the tokenized line with syntax

pattern and semantic pattern, determining if

the tokenized equivalent of the program

line/segment has been equal with any of the

supported patterns. If the tokenized line

matches with any of the patterns previously

recorded, the line is considered correct.

Otherwise, it is considered inappropriate for

the previously defined grammar.

Plenary session Kazi et al.

21

Figure 3. Lexical, syntax and semantic verification of a program line in PP simulator

Figure 4. Lexical analysis of incorrect code segment with recognition of character, words and

tokenization in PP simulator

Plenary session Kazi et al.

22

6.TEACHING RESULTS

6.1. General teaching results

In this section the teaching results from the school

year 2019/20 at PP@TFZR are presented. Research

sample is based on 35 students results (complete

number of 3rd year students in 2019/20 at the

Program Translators course). The results are

presented with the status on the end of semester

(after the teaching session has ended) and after

exams at June and July 2020.

Results are presented at Table 3 with class activity

and number of students.

Table 3. Teaching statistics at PP@TFZR in

2019/20

Class activity
Number of

students

Presence at regular theory classes 33

Actively work assignments at regular

practical lab classes

27

Registered at Facebook group PP@TFZR

(during lockdown)

24

Actively work on home works during

pandemic lockdown

14

Registered and attending post-lockdown

non-mandatory classes

9

Totally active at regular + lockdown +

non-mandatory classes

34

Bonus for extra activity 24

Mid-term exam passed 24 (69%)

Project finalized 12

Passed whole exam 12 (34%)

In aim to demonstrate the effects of all efforts in
improving teaching and learning environment for
the course Program Translators @ TRZR in
2019/20, it would be beneficial to compare these
results with teaching results from previous school
years. It is important to mention that the course

“Program Translators” started in school year
2017/18 with first generation of students.
In aim to have an approximately valid comparison,

the teaching results will be presented for the same

exam period, i.e. exams that were organized in

June and July, immediately after the teaching

semester for the course has been finished.

Data analysis is performed according to raw data

available from the Program Translators pages

@TFZR website [26].

Table 4. presents comparative data of general

students’ success for the exam terms June/July for

three generation of students – school year

2017/18, 2018/19 with previous professor and,

with new professor (having changed teaching

goals, content, teaching methods, materials etc),

generation 2019/20.

Table 4. Comparative presentation of students’

success for the PP@TFZR in three

generation of students

Figure 5. presents graphical representation of data

provided in Table 4.

Figure 5. Graphical presentation of comparative

statistics of students success in three

generations of PP@TFZR

According to previously presented data, it is

obvious that certain improvements have been

made comparing to results from previous two

school years period. Still, results for the overall

students’ success at first two exam terms (June,

July) could not be considered satisfactory in

2019/20, since the whole exam passed only 34%

of all students in generation.

6.2. Students’ experiments in PP simulator-

related projects

In projects in 2019/20 PP@TFZR, students used

and changed PP simulator in aim to experiment

(Figure 6, Figure 7, Figure 8, Listing 1 – authors

are: student Bojan Babic with mentor Ljubica Kazi).

Students used PP simulator for test code lines

written in C# and Java programming languages.

In aim to make students aware of errors that

compilers could detect (lexical, syntax, semantic)

and run-time errors that could not be detected in

compile-time, students were engaged, in their

projects, to make intentional lexical, syntax,

Year

Number of
students
in
generation

Number
of
students
that
passed
whole
exam in
June/July

% of
students
that
successfully
passed
exam
(June/July
Exams)

2017/18 31 2 6

2018/19 36 2 6

2019/20 35 12 34

Plenary session Kazi et al.

23

semantic errors, as well as run-time errors.

Example of making intentional run-time errors

within the PP simulator tool is given at Figure 7.

Figure 6. Compilation result of the PP simulator as a software within Visual Studio NET

Figure 7. Example of intentional run-time error in PP simulator

Plenary session Kazi et al.

24

Example of java program line to be tested in PP

simulator with errors is given in Listing 1:

CORRECT
int brojac=Integer.parseInt(poruka);
LEXICAL ERROR
Int Br = Integer.ParseInt(poruka);
SYNTAX ERROR
int brojac=Integer.parseInt(poruka)
SEMANTIC ERROR

string brojac = Integer.parseInt(poruka);

Listing 1. Example of experimental program line

In aim to adjust PP simulator, code tables were

updated to support lexicon and syntax/semantic

patterns that are used for recognition and

evaluation of the program line.

The error code lines and correct ones were put into

the text box at the top and after starting the

analysis, for the correct code line the result is given

at Figure 8.

Figure 8. Students project – results in experimenting with correct java program line in PP simulator

7.CONCLUSION

Higher education constantly adapts to the needs of

technology advancements, by including new

teaching contents, but also new teaching materials,

methods and tools. This paper presents

improvements in teaching at course Program

Translators at University of Novi Sad, Technical

Faculty “Mihajlo Pupin” Zrenjanin, Serbia, made in

school year 2019/20. Changes have been made in

teaching content, teaching methodology and

assessment, as well as in teaching material and

educational tools (“PP simulator”).

Aim of this paper was to present all the included

changes, with particular emphasis on the

developed tool “PP simulator”. Finally, the outcome

of all the efforts for the teaching improvements

have been presented with teaching results statistics

after first two exam terms (for the generation of

students in school year 2019/20), compared to

success percentage from previous two school years

students.

General results of the presented teaching should be

put in context of teaching process, materials,

methods and tools, but also the specific situations

with corona virus pandemic restrictions, which

disabled students to attend regular classes in two

months period starting from March 16 2020. It has

been shown that students’ interest to attend and

actively participate in interactive regular classes

has been much greater than doing home works

during lockdown period. Finally, 69% passed mid-

term exams, which shows that all improvement

efforts made positive outcome.

Creating and documenting a software solution (with

creating and handling errors with the use of

compiler) is the essence of the students’ project,

which requires more time and effort. At first two

exam terms 34% of all students have finished their

projects and passed the whole exam. 25% of them

chose to modify PP simulator.

Even the PP simulator has been designed as an

universal tool for program code evaluation

Plenary session Kazi et al.

25

(regardless programming language), it is expected

in next years to be improved. Currently, it supports

lexical, syntax and semantic evaluation of a code

line and only lexical analysis and verification of a

code segment. This version of PP simulator is based

on syntax and semantic patterns which are

compared with tokenized code lines in aim to

determine their suitability. Of course,

improvements should be made in this core principle

of detecting the correct syntax and semantic forms

of program code lines.

Having PP simulator closer to theoretical

foundations of compiler constructions will enable

students’ better understanding of abstract concepts

of formal grammars, automata theory and others.

Having a better version of PP simulator will improve

teaching environment in such way that it will

encourage and direct students towards creating or

modifying compiler simulators. This way, some of

the project types will be excluded (such as 1 and

2), while those closer to compiler constructions will

be emphasized.

Teaching content, methods, materials and tools are

under constant improvements and adjustments to

enable students have adequate knowledge and

skills required in industry. In that context, it is very

important to emphasize that, even new

technologies and development environments

encourage improvements in teaching process, the

course core content should remain in focus,

together with implementing academic principles of

teaching and careful students’ workload planning.

REFERENCES

[1] Bloom B, et al (1956): “Taxonomy of
Educational Objectives – The Classification of
Educational Goals, Handbool 1 Cognitive
Domain”, Longmans, Green and Co, LTD,
London, David McKay Company

[2] Anderson L.W, et al (2001): “A taxonomy for
learning, teaching and assessing: a revision of
Bloom’s taxonomy of educational objectives”,
Longman, New York

[3] Vanderbilt University Center for Teaching
“Bloom’s taxonomy”,

https://cft.vanderbilt.edu/guides-sub-

pages/blooms-taxonomy/ [visited: 14th July
2020]

[4] Rautgerberg M: “Lecture notes on Compilers”,
University of Technology, Eindhoven,
https://rauterberg.employee.id.tue.nl/lecture
notes/DA308/COMPILER.pdf / [visited: 14th
July 2020]

[5] ISO/IEC 14977 standard for Extended Backus-
Naur Form,
https://www.cl.cam.ac.uk/~mgk25/iso-
14977.pdf / [visited: 14th July 2020]

[6] Gordon S: “EBNF and Syntax Diagrams lecture
notes”, College of Engineering, CSU

Sacramento,
https://athena.ecs.csus.edu/~gordonvs/135/r

esources/05ebnfSyntaxDiagrams.pdf [visited:
14th July 2020]

[7] Chomsky N (2006): “Language and Mind”,
Cambridge University Press.

[8] White J.R, Presser L (1973): “A structured

language for translator construction”, The

Computer Journal

[9] Lucas H.C, Presser L (1972): “A method of

software evaluation: a case of programming

language translators”, The Computer Journal

[10] Presser L, Benson J (1973): “Evaluation of

compiler diagnostics”, The Computer Journal,

Vol 17, No 2

[11] Schneider V (1969): “A system for designing
fast programming language translator”, Spring
joint computer conference AFIPS '69

proceedings, May 14-16, 1969, pp. 777–79
[12] McAtamney J (2010): “C-to-Java

programming language translator”, US Patent,

https://patentimages.storage.googleapis.com/

28/4a/52/d33e1b326637b5/US8533690.pdf

[visited: 14th July 2020]

[13] Kuznetsov A.S. et al (2019): “Enhanced

pushdown automaton for recognizing multi-

syntax programming languages”, Journal of

Physics: Conference Series, ITBI 2019

[14] Ribic S (2006): “Concept and implementation

of the programming language and translator,

for embedded systems, based on machine code

decompilation and equivalence between source

and executable code”, 13th IEEE Working

Conference on Reverse Engineering

[15] Branstad D.K (1970): “A computer-aided

instructional system for teaching formal

languages”, Iova State University, PhD thesis

[16] Li J et al (2017): “Promotion of Educational

Effectiveness by Translation-based

Programming Language learning using Java

and Swift”, Proceedings of the 50th Hawaii

International Conference on System Sciences

[17] Bachelor course of Program Translators at

Elektronski fakultet Nis, Serbia

https://www.elfak.ni.ac.rs/downloads/akredita

cija-2019/oas/rii/3OER7O03-programski-

prevodioci.pdf [visited: 14th July 2020]

[18] Bachelor course of Program Translators 1 at

Elektrotehnicki fakultet Beograd,

https://www.etf.bg.ac.rs/sr-

lat/fis/karton_predmeta/13S114PP1-

2013#gsc.tab=0 [visited: 14th July 2020]

[19] Master course of Program Translators 2 at at

Elektrotehnicki fakultet Beograd,

https://www.etf.bg.ac.rs/sr-

lat/fis/karton_predmeta/13M111PP2-

2013#gsc.tab=0 [visited: 14th July 2020]

[20] Bachelor course of Program Translators at

Fakultet tehnickih nauka Novi Sad,

http://www.acs.uns.ac.rs/sr/pp [visited: 14th

July 2020]

Plenary session Kazi et al.

26

 [21] Tool Flex (Princeton University),

https://www.cs.princeton.edu/~appel/modern

/c/software/flex/flex.html [visited: 14th July

2020]

[22] Tool Bison,

https://www.gnu.org/software/bison/ [visited:

14th July 2020]

[23] Tool YACC, (Bell Labs and Stephen C.

Johnson),

http://dinosaur.compilertools.net/yacc/index.h

tml [visited: 14th July 2020]

[24] On-line teaching page within Program

Translators Course at University of Novi Sad,

Technical Faculty “Mihajlo Pupin” Zrenjanin,

Serbia, created by Ljubica Kazi in 2019/20,

http://www.tfzr.rs/Predmet/programski-

prevodioci/ucenje-na-daljinu-201920---

elektronski-materijali-za-predavanja-i-vezbe

[visited: 14th July 2020]

[25] Tool “Gold”, http://goldparser.org/getting-
started/6-how-gold-works.htm [visited: 14th

July 2020]
[26] Teaching results at Program Translators

Course at University of Novi Sad, Technical
Faculty “Mihajlo Pupin” Zrenjanin, Serbia,
http://www.tfzr.rs/Predmet/programski-
prevodioci/ocene-predispitnih-obaveza-i-ispita
[visited: 14th July 2020]

https://www.gnu.org/software/bison/
http://www.tfzr.rs/Predmet/programski-prevodioci/ocene-predispitnih-obaveza-i-ispita
http://www.tfzr.rs/Predmet/programski-prevodioci/ocene-predispitnih-obaveza-i-ispita

